58 research outputs found

    Cooperative Trust Framework for Cloud Computing Based on Mobile Agents

    Get PDF
    Cloud computing opens doors to the multiple, unlimited venues from elastic computing to on demand provisioning to dynamic storage, reduce the potential costs through optimized and efficient computing. To provide secure and reliable services in cloud computing environment is an important issue. One of the security issues is how to reduce the impact of for any type of intrusion in this environment. To counter these kinds of attacks, a framework of cooperative Hybrid intrusion detection system (Hy-IDS) and Mobile Agents is proposed. This framework allows protection against the intrusion attacks. Our Hybrid IDS is based on two types of IDS, the first for the detection of attacks at the level of virtual machines (VMs), the second for the network attack detection and Mobile Agents. Then, this framework unfolds in three phases: the first, detection intrusion in a virtual environment using mobile agents for collected malicious data. The second, generating new signatures from malicious data, which were collected in the first phase. The third, dynamic deployment of updates between clusters in a cloud computing, using the newest signatures previously created. By this type of close-loop control, the collaborative network security management system can identify and address new distributed attacks more quickly and effectively. In this paper, we develop a collaborative approach based on Hy-IDS and Mobile Agents in Cloud Environment, to define a dynamic context which enables the detection of new attacks, with much detail as possible

    Use Trust Management Framework to Achieve Effective Security Mechanisms in Cloud Environment

    Get PDF
    Cloud Computing is an Internet based Computing where virtual shared servers provide software, infrastructure, platform and other resources to the customer on pay-as-you-use basis. Cloud Computing is increasingly becoming popular as many enterprise applications and data are moving into cloud platforms. However, with the enormous use of Cloud, the probability of occurring intrusion also increases. There is a major need of bringing security, transparency and reliability in cloud model for client satisfaction. One of the security issues is how to reduce the impact of any type of intrusion in this environment. To address this issue, a security solution is proposed in this paper. We provide a collaborative framework between our Hybrid Intrusion Detection System (Hy-IDS) based on Mobile Agents and virtual firewalls. Therefore, our hybrid intrusion detection system consists of three types of IDS namely IDS-C, IDS-Cr and IDS-M, which are dispatched over three layer of cloud computing. In the first layer, we use IDS-C over our framework to collect, analyze and detect malicious data using Mobile Agents. In case of attack, we collect at the level of the second layer all the malicious data detected in the first layer for the generation of new signatures using IDS-Cr, which is based on a Signature Generation Algorithm (SGA) and network intrusion detection system (NIDS). Finally, through an IDS-M placed in the third layer, the new signatures will be used to update the database NIDS belonging to IDS-Cr, then the database to NIDS belonging of IDS-Cr the cluster neighboring and also their IDS-C. Hardware firewall is unable to control communication between virtual machines on the same hypervisor. Moreover, they are blind to virtual traffic. Mostly, they are deployed at Virtual Machine Monitor- level (VMM) under Cloud provider’s control. Equally, the mobile agents play an important role in this collaboration. They are used in our framework for investigation of hosts, transfer data malicious and transfer update of a database of neighboring IDS in the cloud. With this technique, the neighboring IDS will use these new signatures to protect their area of control against the same type of attack. By this type of close-loop control, the collaborative network security management framework can identify and address new distributed attacks more quickly and effectively

    An efficient scanning algorithm for photovoltaic systems under partial shading

    Get PDF
    This paper proposes a new technique of maximum power point tracking (MPPT) for a photovoltaic (PV) system connected to three phase grids under partial shading condition (PSC), based on a new combined perturb and observe (P&O) with scanning algorithm. This new algorithm main advantages are the high-speed tracking compared to existing algorithms, high accuracy and simplicity which makes it ideal for hardware implementation. Simulation was carried on MATLAB/Simulink. Results showed the effectiveness in speed and accuracy of our algorithm over the existing ones either during standard condition (STC) or PSC. Furthermore, conventional direct power control (DPC) was applied to synchronize successfully the injected power with the grid, which makes our algorithm global and works efficiently under severe conditions

    A New Method for Improving the Fairness of Multi-Robot Task Allocation by Balancing the Distribution of Tasks

    Get PDF
    This paper presents an innovative task allocation method for multi-robot systems that aims to optimize task distribution while taking into account various performance metrics such as efficiency, speed, and cost. Contrary to conventional approaches, the proposed method takes a comprehensive approach to initialization by integrating the K-means clustering algorithm, the Hungarian method for solving the assignment problem, and a genetic algorithm specifically adapted for Open Loop Travel Sales Man Problem (OLTSP). This synergistic combination allows for a more robust initialization, effectively grouping similar tasks and robots, and laying a strong foundation for the subsequent optimization process. The suggested method is flexible enough to handle a variety of situations, including Multi-Robot System (MRS) with robots that have unique capabilities and tasks of varying difficulty. The method provides a more adaptable and flexible solution than traditional algorithms, which might not be able to adequately address these variations because of the heterogeneity of the robots and the complexity of the tasks. Additionally, ensuring optimal task allocation is a key component of the suggested method. The method efficiently determines the best task assignments for robots through the use of a systematic optimization approach, thereby reducing the overall cost and time needed to complete all tasks. This contrasts with some existing methods that might not ensure optimality or might have limitations in their ability to handle a variety of scenarios. Extensive simulation experiments and numerical evaluations are carried out to validate the method's efficiency. The extensive validation process verifies the suggested approach's dependability and efficiency, giving confidence in its practical applicability

    Novel System and Method For Telephone Network Planing Based on Neutrosophic Graph

    Get PDF
    Telephony is gaining momentum in the daily lives of individuals and in the activities of all companies. With the great trend towards telephony networks, whether analogue or digital known as Voice over IP (VoIP), the number of calls an individual can receive becomes considerably high. However, effective management of incoming calls to subscribers becomes a necessity. Recently, much attention has been paid towards applications of single-valued neutrosophic graphs in various research fields. One of the suitable reason is it provides a generalized representation of fuzzy graphs (FGs) for dealing with human nature more effectively when compared to existing models i.e. intuitionistic fuzzy graphs (IFGs), inter-valued fuzzy graphs (IVFGs) and bipolar-valued fuzzy graphs (BPVFGs) etc. In this paper we focused on precise analysis of useful information extracted by calls received, not received due to some reasons using the properties of SVNGs. Hence the proposed method introduced one of the first kind of mathematical model for precise analysis of instantaneous traffic beyond the Erlang unit. To achieve this goal an algorithm is proposed for a neutrosophic mobile network model (NMNM) based on a hypothetical data set. In addition, the drawback and further improvement of proposed method with a mathematical proposition is established for it precise applications

    Influence of SME characteristics on the implementation of ERP

    Get PDF
    The ERP market has recently experienced a significant evolution in recent years, both in large companies and in small and medium-sized enterprises (SMEs). Compared to large companies, SMEs are distinguished by specific characteristics that can influence the implementation of the ERP system in these organizations. The purpose of this study is to analyse how these characteristics can determine the success or the failure of ERP implementation in SMEs. First, a set of characteristics, specific to SMEs has been identified from the relevant literature. Then, the influence of each characteristic on the different ERP lifecycle activities were studied. A multiple case study of four SMEs from different sectors was conducted. The data collection was carried out through 28 individual interviews with several stakeholders (users, external consultants, internal IT specialists and managers) in the four cases. The analysis of the interview data showed first that financial resources, Decision making and, the type of ownership of the company were identified as the most influential contextual factors. Then the two phases of the ERP life cycle "implementation" and "use and maintenance" were identified as being the most affected by the context of SMEs. The study results have significant implications for experts, managers and information

    SHORTEST PATH PROBLEM UNDER TRIANGULAR FUZZY NEUTROSOPHIC INFORMATION

    Get PDF
    In this paper, we develop a new approach to deal with neutrosphic shortest path problem in a network in which each edge weight (or length) is represented as triangular fuzzy neutrosophic number. The proposed algorithm also gives the shortest path length from source node to destination node using ranking function. Finally, an illustrative example is also included to demonstrate our proposed approach
    • …
    corecore